We use cookies to improve your experience. By using our site you are accepting our cookie policy. 
Read our privacy policy to learn more.

Innovation and Best Practice
for Business Success

Established 1967



Go to Marketing & Public Relations

What Not to Do When Framing an Analytic Project

15th June 2015 | Mike Grigsby

Marketing Analytics Author Mike Grigsby Provides 2 Examples to Help You Prepare for Your Next Analytic Project

Marketing Analytics (9780749474171)Framing an analytic project is about designing the analysis BEFORE analysis is even done. This conversation should include far more than the analytic team. It needs to include stakeholders, those who will actually use/make decisions based on the analysis. 

Below are a couple of examples where the right questions were not asked, the right pre-design was ignored. Then a rule is suggested to counter bad framing:

BAD FRAMING ANECDOTE 1
So a marketing client showed a model their econometrics team developed. This was to be a customer demand model and they wanted to estimate what drives units. The specification of the model was:

Units = f(age, education, income, size of household, consumer confidence, seasonality and lagged units)

The model fit rather well with an adjusted R2 of over 85%. The problem? There was nothing to act on, there was no marketing lever. This was a case of failing to frame the problem. The question was not “Can you estimate demand?” even though that was the questions given. The real question was “Can you show me levers I can pull to influence demand?”

This was a marketing problem NOT an economic problem. What do economists know anyway? They’ve predicted 12 of the last 7 recessions!

An actionable demand model would be:

Units = f(seasonality, # direct mails sent, # emails sent)

Regardless of the fit this is far more useful than the former. This is rule # 1 in framing an analytic project: Frame the Problem with Action-ability in Mind.

BAD FRAMING ANECDOTE 2
A telecomm client had a churn problem. They were losing nearly 25% of their subscribers every year. They had done several analytic exercises but was not able to produce a list of potential 60-day attrition more accurate than 34%. That is, they could produce a list of subscribers most likely to churn but only 34% actually did. That accuracy is not enough to develop a marketing campaign to stop /slow down churn. They framed the question as a probability to churn model using logistic regression.

On thinking about the problem, it seemed the question was not “Who is likely to churn?” but “What causes churn and can marketing do something about it?” That is, frame the question from the customer’s point of view. The job of analytics is always to quantify causality.

So a strategy brainstorm session yielded several causes of churn: high bills, using a lot of data/minutes/texts that contribute to high bills, dropped calls, no relationship with the firm, etc. This yielded a segmentation based on CAUSES of churn. There was one or more segments that were sensitive to each of the four hypothesized causes.

Then a churn model using survival analysis was developed for EACH segment. (My book Marketing Analytics shows the details of developing such a model). Because each segment was distinct based on causes to churn, the independent variables were different for each. To that segment that was sensitive to high bills a promotional offer could be designed to give them a discount. To that segment sensitive to dropped calls whenever a dropped call occurred an apology letter could be created and an offer issued.

This approach generated a list of likely churners that was nearly 80% accurate! The firm had a way to target and action-ability against each target to stop / slow down churn.

This is rule # 2 in framing an analytic project: Frame the Problem from the customer’s POV.

 

About the Author: Mike Grigsby has been involved in marketing science for over 25 years. He was marketing research director at Millward Brown and has held leadership positions at Hewlett-Packard and the Gap. With a wealth of practitioner experience at the forefront of marketing science and data analytics, he now heads up the strategic retail analysis practice at Targetbase. Mike is also known for academic work, having written articles for academic and trade journals and taught at both the graduate and undergraduate levels. He is a regular speaker at trade conventions and seminars.

Save 20% when you buy Marketing Analytics with discount code MKTMAB

Buy now

 


Marketing & Public Relations

For over 40 years Kogan Page has been providing marketing, advertising, sales and PR professionals with the great ideas and practical advice they need to be the best at what they do. Here you’ll find free guides, case studies, original research and articles from our author experts. Subscribe for weekly updates by selecting 'Marketing' on our newsletter form and follow us on Twitter (@KPMktng) for the latest information.

Go to zone